Neural Network Machine Translation Method Based on Unsupervised Domain Adaptation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Domain Neural Machine Translation through Unsupervised Adaptation

We investigate the application of Neural Machine Translation (NMT) under the following three conditions posed by realworld application scenarios. First, we operate with an input stream of sentences coming from many different domains and with no predefined order. Second, the sentences are presented without domain information. Third, the input stream should be processed by a single generic NMT mo...

متن کامل

Fast Domain Adaptation for Neural Machine Translation

Neural Machine Translation (NMT) is a new approach for automatic translation of text from one human language into another. The basic concept in NMT is to train a large Neural Network that maximizes the translation performance on a given parallel corpus. NMT is gaining popularity in the research community because it outperformed traditional SMT approaches in several translation tasks at WMT and ...

متن کامل

Unsupervised Neural Machine Translation

In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely...

متن کامل

Unsupervised Adaptation for Statistical Machine Translation

In this work, we tackle the problem of language and translation models domainadaptation without explicit bilingual indomain training data. In such a scenario, the only information about the domain can be induced from the source-language test corpus. We explore unsupervised adaptation, where the source-language test corpus is combined with the corresponding hypotheses generated by the translatio...

متن کامل

Instance Weighting for Neural Machine Translation Domain Adaptation

Instance weighting has been widely applied to phrase-based machine translation domain adaptation. However, it is challenging to be applied to Neural Machine Translation (NMT) directly, because NMT is not a linear model. In this paper, two instance weighting technologies, i.e., sentence weighting and domain weighting with a dynamic weight learning strategy, are proposed for NMT domain adaptation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complexity

سال: 2020

ISSN: 1099-0526,1076-2787

DOI: 10.1155/2020/6657344